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Traditional Chinese medicine commands a unique position among all traditional medicines because of its

5000 years of history. Our own interest in natural products from traditional Chinese medicine was triggered

in the 1990s, by artemisinin-type sesquiterpene lactones from Artemisia annua L. As demonstrated in recent

years, this class of compounds has activity against malaria, cancer cells, and schistosomiasis. Interestingly, the

bioactivity of artemisinin and its semisynthetic derivative artesunate is even broader and includes the inhibition

of certain viruses, such as human cytomegalovirus and other members of the Herpesviridae family (e.g., herpes

simplex virus type 1 and Epstein-Barr virus), hepatitis B virus, hepatitis C virus, and bovine viral diarrhea

virus. Analysis of the complete profile of the pharmacological activities and molecular modes of action of

artemisinin and artesunate and their performance in clinical trials will further elucidate the full antimicrobial

potential of these versatile pharmacological tools from nature.

Artemisinin is a natural product derived from the Chi-

nese herb Artemisia annua (figure 1). During the Viet-

nam War, Ho Chi Minh asked Mao Zedong for help,

because more North Vietnamese soldiers were dying

from malaria than from armed conflicts. The Chinese

government launched a program to find new antima-

larial drugs. As a result, Tu Youyou, a Chinese scientist

from the Chinese Academy of Traditional Chinese Med-

icine (Beijing, China), identified artemisinin as the ac-

tive compound of A. annua in 1972 [1]. Its overwhelm-

ing antimalarial activity was demonstrated in numerous

clinical studies by Chinese and Western scientists. De-

spite this success, the true potential of artemisinin was

underestimated in the Western world for many years
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[2]. In the meantime, the World Health Organization

officially recommends artemisinin and its derivatives,

such as artesunate and artemether, for the treatment of

malaria, particularly as a part of combination therapies

with other antimalarial drugs.

Artemisinin, artesunate, and additional derivatives

are the most promising candidate compounds to ease

the worldwide malaria burden. The high safety and

tolerability profile of these drugs adds to their attrac-

tiveness [3]. This group of compounds is also active

against cancer cells and schistosomiasis [4–10]. The fo-

cus of the present review is the antiviral activity of

artemisinin and artesunate.

Although some authors claim that the heme-medi-

ated decomposition of the endoperoxide bridge and

production of carbon-centered free radicals is necessary

for antimalarial activity [11], other data indicate that

the biological activity of artemisinin-like drugs does not

correlate with their chemical reactivity [12]. Computer-

assisted models for the calculation of quantitative struc-

ture-activity relationships have been developed to ad-

dress these contradictory results [13–15].

Peak plasma concentrations of 391–588 mg/L have
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Figure 1. Cultivar of the Chinese herb Artemisia annua L. (qinhao or sweet wormwood) and its active principle artemisinin (qinhaosu). Artesunate
represents a semisynthetic derivative of artemisinin that has improved water solubility.

been reported for orally administered artemisinin (500 mg,

single dose) [16, 17], and peak plasma concentrations of 2640

mg/L and 2020 mg/L have been reported for intravenous arte-

sunate (2 mg/kg) and for its active metabolite dihydroartem-

isinin, respectively [18, 19]. The oral administration of arte-

sunate (100 mg) leads to a plasma-elimination half-life of 39–

95 min for dihydroartemisinin [20–26].

The metabolism of artemisinin in human liver microsomes

is primarily mediated by cytochrome P-450 monooxygenase

enzyme (CYP) 2B6, with a secondary contribution by CYP3A4

in individuals with low CYP2B6 expression. The contribution

of CYP2A6 to artemisinin metabolism is likely of minor im-

portance [27]. There is a large body of evidence suggesting that

artemisinin influences the CYP activity, which could result in

drug-drug interactions [28]. An induction of activity by artem-

isinin was reported for CYP2A5, CYP2A6, CYP2B1, CYP2B6,

CYP2B10, CYP2C19, and CYP3A4 [29–34]. In addition, ar-

temisinin activates the constitutive androstane receptor and

pregnane X receptor [33, 34], which explains the upregulation

of CYP2B6 and CYP3A4. The data regarding CYP1A2 are con-

tradictory [35–38], whereas artemisinin inhibits CYP2D6 [37].

Artemisinin leads to an autoinduction of drug metabolism,

which reduces its own bioavailability [39].

In various clinical studies, artemisinin has been administered

alone or in combination with other antimalarial drugs in dos-

ages of up to 500 mg per day. As reviewed elsewhere, clinical

trials of artesunate monotherapy used dosages of 1–8 mg/kg

intravenously or 600–1200 mg per day orally for 5 days [40].

In combination therapies, 4–25 mg/kg intravenously or 200–

800 mg per day orally for 3 days have been used [40].

Artemisinin derivatives are tolerated well by patients [41,

42]. Mild and reversible hematological and electrocardiographic

abnormalities, such as neutropenia and first-degree heart block,

have been observed infrequently. Neurotoxic effects have been

repeatedly reported in experiments with mice, rats, and dogs,

as reviewed elsewhere [43]. Affected areas in the brain stem are

the reticular system with regard to autonomic control, the ves-

tibular system, the auditory system (trapezoid nucleus), and

the red nucleus, which is important for coordination [44–51].

A longer exposure time to a lower peak blood concentration

of an artemisinin derivative is more neurotoxic than a shorter

duration of exposure and a higher peak blood concentration

[52]. These animal experiments gave rise to concerns about the

safety of artemisinin and its derivatives in humans. A clinical

safety review of 108 clinical studies that enrolled 9241 malaria

patients provided ample evidence that artemisinins are safe and

without serious adverse effects or significant severe toxicity,

including neurotoxicity [41]. Ataxia, slurred speech, and hear-

ing loss have been reported in few patients treated with artem-

isinin [53]. Although the artemisinin derivative artesunate

seems to be without toxicity, van Hensbroek et al. [54] observed

delayed coma recovery times in Gambian children with malaria

who were treated with intramuscular artemether versus intra-

venous quinine. Because of these conflicting results, Step-

niewska et al. [55] performed a meta-analysis of 7 studies in-

volving 1919 patients with malaria. Applying a uniform coma

recovery time definition, no significant difference in coma re-

covery time was found between patients treated with artemether

and quinine. Additionally, no statistically significant difference

was observed with regard to neurological sequelae. In a recent

study by Dondorp et al. [56], patients with malaria who were

treated with artesunate were compared with patients who were

treated with quinine. The authors did not find significant dif-

ferences in terms of neurotoxic symptoms (i.e., times to speak,

eat, and sit) between treatment groups. Neurological sequelae

did not occur after treatment. Interestingly, patients with ma-
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Table 1. Sensitivity of herpesviruses to artesunate.

Sensitivity
test

Herpesvirus
type

Herpesvirus
subfamily

Strain or
isolate

Type of
analysis

Inhibition at
15 mM, % IC50, mM Reference

1 HCMV b AD169 In vitroa … 3.9 � 0.6 [58]

2 HCMV b AD169 In vitroa 81 5.8 � 0.4 [59]

3 HCMV b Towne In vitroa
199 … [59]

4 HCMV b Clinical isolates In vitroa 82 … [59]

5 HCMV b Clinical isolates In vitroa 69 … [59

6 HCMV b Ganciclover resistant mutant In vitroa … 6.9 � 0.2 [59]

7 HCMV b Multidrug resistant mutant Clinical trialb … … [60]

8 RCMV b Maastricht In vitroa 38 … [58]

9 RCMV b Maastricht In vivo modelc … … [58]

10 MCMV b Smith In vitroa 15 … M.M., unpublished data

11 HHV-6A b U1102 In vitrod 76 3.80 � 1.06 M.M., unpublished data

12 HSV-1 a Clinical isolate In vitroa 83 … [59]

13 EBV g B95-8 In vitrod 63 7.21 � 2.25 M.M., unpublished data

NOTE. EBV, Epstein-Barr virus; HCMV, human cytomegalovirus; HHV-6A, human herpesvirus 6A; HSV-1, herpes simplex virus 1; MCMV, murine
cytomegalovirus; RCMV, rat cytomegalovirus.

a Virus replication analyzed in infected primary fibroblasts (green fluorescent protein–based reporter assays and plaque reduction assays) [61].
b Clinical trial with HCMV-infected patients after hematopoietic stem cell transplantation (quantitative PCR and antigenemia assays for viral load in

blood specimens) [60].
c Virus replication analyzed in immunosuppressed rats (quantitative PCR and plaque reduction assays of salivary gland specimens) [58].
d Virus replication analyzed in infected immortalized lymphocytes (quantification of immunofluorescence stainings).

laria who developed late onset hypoglycemia had a higher in-

cidence of death than did patients treated with artesunate who

did not have hypoglycemia. This may be an issue that deserves

additional investigation.

ACTIVITY AGAINST HUMAN
CYTOMEGALOVIRUS (HCMV)

Chinese scientists provided the first hint that artemisinin might

have antiviral activity [57]. Indeed, artesunate inhibits the in

vitro replication of HCMV (HCMV AD169 and other strains;

table 1) and herpes simplex virus type 1 (HSV-1) [59]. With

regard to artesunate’s potential inhibition of HCMV, it was

important to demonstrate that viruses with a variety of phe-

notypes (i.e., low-passage clinical isolates, drug-resistant mu-

tants, laboratory strains, and recombinant virus clones) were

all highly sensitive to artesunate. A possible mechanism was

suggested by the finding that artesunate inhibited central reg-

ulatory processes of HCMV-infected cells (such as activation

pathways dependent on NF-kB or Sp1), thus interfering with

critical host-cell–type and metabolism requirements for HCMV

replication.

HCMV is a major cause of disease in immunocompromised

individuals, including patients with AIDS and transplant re-

cipients, and it is a common cause of congenital infection lead-

ing to developmental abnormalities and hearing loss [62]. All

currently available anticytomegaloviral drugs, including gan-

ciclovir, foscarnet, and cidofovir, target the viral DNA poly-

merase. The use of these drugs is limited by toxicity, low oral

bioavailability (with the exception of the oral prodrug valgan-

ciclovir), teratogenicity, and drug resistance. These limitations,

along with the repeated and prolonged courses of therapy often

required for the treatment of HCMV infection in transplant

recipients, create an increasing need for new antiviral drugs,

particularly for drugs that exhibit low levels of toxicity and

activity against HCMV variants that are resistant to conven-

tional drugs [59].

The replication of HCMV is tightly coregulated with cellular

activation pathways mediated by the direct or indirect inter-

action with cellular DNA-binding factors, such as NF-kB and

Sp1 [63, 64]. These factors provide major determinants of the

virus–host cell interaction. For both NF-kB and Sp1, a reduc-

tion in HCMV-induced protein synthesis and a reduction in

the DNA binding activity of NF-kB and Sp1 were observed with

artesunate treatment [59]. The inhibitory activity towards NF-

kB is not specific for artesunate alone; it has also been dem-

onstrated for other sesquiterpene lactones [65, 66]. The effi-

ciency of HCMV replication is closely connected with NF-kB

and Sp1 activation pathways and other involved factors, such

as the cellular signaling kinase phosphoinositol 3–kinase [67].

Phosphoinositol 3–kinase is required for the activation of NF-

kB and Sp1 in infected fibroblasts. Interestingly, the phospho-

rylation of downstream effectors of phosphoinositol 3–kinase,

such as the protein kinases Akt and p70S6K, is also inhibited

by artesunate [59] (figure 2). Moreover, there are several ex-

amples that chemical compounds interfering with activation

pathways of cellular transcription factors (e.g., the signal trans-

duction pathway that includes mitogen-activated protein kinase

p38) inhibit HCMV replication. It is noteworthy that the

HCMV immediate-early promoter enhancer (in addition to

other viral promoters) contains binding sites for both Sp1 and
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Figure 2. Hypothetical molecular mechanism of artesunate against
human cytomegalovirus.

NF-kB and, therefore, is responsive to both factors [68, 69].

Reduction of IE2p86 expression critically limits viral replica-

tion, because IE2p86 is essential for the initiation of subsequent

regulatory steps [70]. On the other hand, NF-kB is a major

factor in cellular defense pathways (e.g., IFN type 1-induced

antiviral effects) and may also have a negative impact on viral

productivity and the course of infection [71]. Thus, the acti-

vation pathways that involve Sp1 and NF-kB are important

factors in the initial onset of the viral replication cycle, as well

as in later steps in virus-cell interaction, and are, therefore,

crucial for the antiviral action of artesunate.

Because of this background, it was interesting to analyze

whether artesunate was active against drug-resistant HCMV, as

well. Indeed, ganciclovir-resistant mutants (i.e., the laboratory

mutant AD169-GFP314, which carries the resistance-conferring

mutation UL97 [M460I], or ganciclovir-resistant clinical iso-

lates) were inhibited with similar efficacy as the drug-sensitive

parental virus (AD169-GFP) [61]. It is obvious from the results

of these experiments involving ganciclovir-resistant HCMV that

the putative inhibitory mechanisms of artesunate must be dif-

ferent than the mechanism of conventional DNA polymerase–

inhibiting drugs.

The anticytomegaloviral activity of artesunate is not re-

stricted to HCMVs but also includes animal CMVs—in par-

ticular, rat CMV [58]. An important finding was that increased

intracellular iron concentrations enhance artesunate’s anticy-

tomegaloviral activity. This iron-enhanced effectiveness was

demonstrated by several observations, and the following are

some promising features of the anticytomegaloviral activity of

artesunate. First, treatment of CMV-infected fibroblasts with

artesunate plus ferrous iron (Ferrosanol; Monheim) and/or sol-

uble Transferrin resulted in enhanced suppression of viral rep-

lication. Because Ferrosanol is a clinically approved formula-

tion, this drug could potentially be safely combined with

artesunate in clinical practice. Second, the antiviral activity of

artesunate is additive in combination with conventional drugs,

such as ganciclovir, cidofovir, and foscarnet. A combination of

drugs with different modes of action may delay the develop-

ment of drug resistance. Third, the antiviral activity of arte-

sunate against CMV was also demonstrated in vivo using the

rat CMV model. Importantly, the first successful clinical use

of artesunate for the treatment of HCMV in a patient who

developed drug-resistant infection during preemptive antiviral

therapy after stem cell transplantation has been described [60].

In this case, artesunate proved to be a highly effective and well-

tolerated inhibitor of HCMV replication, which suggests the

need for additional clinical evaluation of its role in the treat-

ment of HCMV infection.

BROAD-SPECTRUM ACTIVITY AGAINST
HERPES VIRUSES

The antiviral activity of artesunate is not restricted to distinct

viral laboratory strains; artesunate is also effective against clin-

ical isolates of HCMV and mutants with resistance against con-

ventional antiviral drugs, such as ganciclovir and cidofovir (M.

Leis and M.M., unpublished data). Novel data show that other

herpesviruses from all subfamilies (a, b, and g) are also sen-

sitive to artesunate—namely, Epstein-Barr virus, herpes simplex

virus 1, and human herpes virus 6A (table 1; M.M., unpublished

data) [58, 59]. This finding suggests that artesunate has broad

activity against herpesviruses. The herpesviruses that have been

analyzed thus far have all demonstrated similar sensitivity to

artesunate (IC50, !10 mM). Some of the analyzed herpesviruses

show different sensitivities to artesunate and artemisinin; ar-

temisinin is inactive against human herpesvirus 6A [72] and

has poor activity against HCMV [58]. This indicates that the

semisynthetic drug artesunate has more antiherpesviral potency

than does its natural parental drug, artemisinin.

ACTIVITY AGAINST HEPATITIS B VIRUS (HBV)

The family Hepadnaviridae includes a group of highly species-

specific viruses that all have a virus-encoded DNA polymerase

with reverse-transcriptase activity [73–75]. One member of this

family, human HBV, is characterized by a high level of hepa-

totropism. This virus belongs to the genus Orthohepadnavirus

and is not cytopathic itself, although it may cause acute ful-

minant hepatitis [76] or chronic liver disease, which may pro-

gress to cirrhosis and, eventually, hepatocellular carcinoma

[77]. In spite of the availability of an effective and safe vaccine
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Figure 3. Spectrum of antiviral activity of artesunate

against HBV, infection by this virus has remained a major

worldwide health problem [78, 79]. Although several phar-

macological strategies are currently being implemented to treat

HBV-infected patients (i.e., the use of IFN and a nucleoside

derivative, lamivudine), no effective antiviral therapy against

HBV infection has yet been fully developed.

In a recent investigation [80], a panel of natural products

derived from medicinal herbs used in traditional Chinese med-

icine has been assayed for anti-HBV activity. Among these

products, artesunate displayed anti-HBV activity. HBV DNA

release was inhibited at an IC50 of 0.5 mM. Host cell viability

was reduced at a concentration 40-times greater (20 mM).

Moreover, the treatment potential is enhanced by synergistic

effects with lamivudine and by the absence of drug-induced

toxicity in host cells. This is important in clinical practice be-

cause of frequent cases of infection by lamivudine-resistant

HBV strains.

The concentration at which artesunate was active against

HBV (110 mM) was similar to that previously reported for its

activity against HCMV [59]. Interestingly, these levels are close

to the drug concentrations achieved in the plasma of patients

in whom this drug is used for anti-malarial treatment (∼7 mM)

[81]. This result was similar to that reported elsewhere [82] for

artesunate use in HepG2 2.2.15 cells.

ACTIVITY AGAINST HEPATITIS C VIRUS (HCV)
AND RELATED VIRUSES

The family Flaviviridae includes 3 genera: Pestivirus (e.g., bovine

viral diarrhea virus), Flavivirus (e.g., Japanese encephalitis vi-

rus), and Hepacivirus (e.g., HCV). Pathogens of the family

Flaviviridae constitute a major cause of disease worldwide. In-

fection with HCV frequently causes chronic hepatitis, which

may progress to cirrhosis and hepatocellular carcinoma [83].

The problem is aggravated by the absence of an efficient vaccine

against HCV and because the standard treatment (pegylated

IFN-a and the purine nucleoside analogue ribavirin [1b-D-

ribofuranosyl-1,2,4-triazole-3-carboxamide]), in addition to

having adverse effects, is not effective in approximately one-

half of infected patients [83]. Therefore, the search for more

effective therapies is crucial. Because all members of the Fla-

viviridae share similarities in virion structure, genome orga-

nization, and replication machinery, some viruses, in particular

bovine viral diarrhea virus, have been used as in vitro models

[84].

The pharmacological interest in artemisinin and its deriva-

tives for the treatment of infections by these viruses is increased

by the severe limitations of currently available antiviral therapy.

Because the mechanisms of action of IFN-a [85, 86] and ri-

bavirin [86, 87] against Flaviviridae viruses are probably dif-

ferent than the mechanisms of artemisinin [88], it was possible

that a combination of these drugs would demonstrate additive

effects; indeed, additive effects were observed by Romero et al.

[89]. IFN binds to cell surface receptors and stimulates signal

pathways that lead to the activation of cellular enzymes that

repress viral replication [85], whereas ribavirin, in addition to

its immunomodulatory properties, has direct antiviral activities

that can be ascribed to several possible mechanisms. These

mechanisms include the inhibition of the HCV RNA–depen-

dent RNA polymerase NS5B and ribavirin’s activity as an RNA

mutagen, which enables it to impair viral replication [90]. Pae-

shuyse et al. [91] reported that the antimalarial drug artemi-

sinin inhibited HCV replicon replication in a dose-dependent

manner in 2 HCV subgenomic replicon constructs at concen-

trations that did not affect Huh 5–2 host cells. Hemin, an iron

donor, inhibits HCV replicon replication by inhibiting the viral

polymerase [92]. The combination treatment of artemisinin

and hemin had a pronounced synergistic antiviral activity with-

out affecting host cells.
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ACTIVITY AGAINST HIV-1

Artesunate has been observed to have activity against HIV-1,

as reported elsewhere [59]. Partial inhibition was demonstrated

for 2 strains of HIV-1—the CCR5-tropic (M-tropic) HIV-1

strain Ba-L (in PM1 cells) and the CXCR4-tropic (T-tropic)

HIV-1 strain NL4–3 (in Jurkat cells). The replication of both

HIV-1 strains was partially inhibited by 600 nM artesunate

throughout the analyzed time period of 10 days. Birku et al.

[93] investigated the effect of artemisinin on the rate of clear-

ance of Plasmodium falciparum in patients with or without HIV

coinfection. Interestingly, Birku et al. [93] observed that HIV-

infected patients showed a delayed clearance of P. falciparum,

which suggested that the health of the host’s immune system

affects the activity of antimalarial drugs. No anti-HIV activity

of artemisinin was reported in this investigation.

CONCLUSIONS AND PERSPECTIVES

After being used in traditional Chinese medicine for 2 millen-

nia, 1 of the “gems” of traditional Chinese medicine’s treasure

box has been rediscovered during recent years. Artemisinin is

certainly one of the most promising natural products investi-

gated in the past 2 decades. With regard to malaria, artemesinin

has the potential to considerably contribute to a change in the

desperate situation that the world is facing. Fortunately, the

value of this compound is not limited to the treatment of

malaria, and a wealth of studies have demonstrating the activity

of artemisinin and its derivatives against cancer cells, schisto-

somiasis, and as reviewed here, various viral diseases (figure 3).

Ironically, in an age in which many scientists are searching

for compounds with increased specificity to their molecular

and cellular targets, awareness of artemisinin is increasing be-

cause of its multifunctionality. This class of compounds seems

to have several targets that are important for different diseases.

Conceptually, modern projects in molecular pharmacology aim

to increase treatment efficacy and to decrease unwanted side

effects by developing compounds that attack disease-related

target molecules with high affinity. It is obvious that the natural

evolution of pharmacologically active compounds in plants

evolved in a different way. Natural products have evolved in

plants as chemical weapons to protect against infections by

bacteria, viruses, and other microorganisms. It is no surprise

that multifunctional molecules might be more versatile and,

therefore, more successful than monospecific molecules for

protecting plants from environmental harm. In the case of

artemisinin, it has been shown that it is active against various

plant pathogenic fungi (i.e., Gaeumannomyces graminis var. tri-

tici, Rhizoctonia cerealis, Gerlachia nivalis, and Verticillium dah-

liae) [94], which supports the role of artemisinin as a protective

agent for the plant. This view of chemical evolution in plants

may fertilize current scientific concepts.
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